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ABSTRACT

The predictability of weekly averaged circulation anomalies in the Northern Hemisphere, and diabatic heating

anomalies in the Tropics, is investigated in a linear inverse model (LIM) derived from their observed simulta-

neous and time-lag correlation statistics. In both winter and summer, the model’s forecast skill at Week 2 (Days 8

to 14) and Week 3 (Days 15 to 21) is comparable to that of a comprehensive global medium range forecast

(MRF) model developed at the National Centers for Environmental Prediction (NCEP). Its skill at Week 3 is

actually higher on average, partly due to its better ability to forecast tropical heating variations and their influ-

ence on the extratropical circulation. The geographical and temporal variations of forecast skill are also similar in

the two models. This makes the much simpler LIM an attractive tool for assessing and diagnosing atmospheric

predictability at these forecast ranges.

The LIM assumes that the dynamics of weekly averages are linear, asymptotically stable, and stochastically

forced. In a forecasting context, the predictable signal is associated with the deterministic linear dynamics, and

the forecast error with the unpredictable stochastic noise. In a low-order linear model of a high-order chaotic sys-

tem, this stochastic noise represents the effects of both chaotic nonlinear interactions and unresolved initial com-

ponents on the evolution of the resolved components. Its statistics are assumed here to be state-independent.

An average signal to noise ratio is estimated at each grid point on the hemisphere, and is then used to estimate

the potential predictability of weekly variations at the point. In general, this predictability is on the order of 50%

higher in winter than summer over the Pacific and North America sectors; the situation is reversed over Eurasia

and North Africa. Skill in predicting tropical heating variations is important for realizing this potential skill. The

actual LIM forecast skill has a similar geographical structure but weaker magnitude than the potential skill.

In this framework, predictable variations of forecast skill from case to case are associated with predictable

variations of signal rather than of noise. This contrasts with the traditional emphasis in studies of shorter-term

predictability on flow-dependent instabilities, i.e. on the predictable variations of noise. In the LIM, the predict-

able variations of signal are associated with variations of the initial state projection on the growing singular vec-

tors of the LIM’s propagator, which have relatively large amplitude in the tropics. At times of strong projection

on such structures, the signal to noise ratio is relatively high, and the Northern Hemispheric circulation is not

only potentially but also actually more predictable than at other times.
1.   Introduction

Weather prediction is in essence a problem of predict-

ing the conditional probability distribution Pf of future

atmospheric states given the occurrence of an initial

state. Predictability – defined most broadly as the poten-

tial to make a useful forecast − depends upon how dif-

ferent Pf is from the unconditional (i.e climatological)

distribution P (e.g., Schneider and Griffies 1999; Klee-

man 2002). Starting as a narrow distribution, Pf gener-

ally drifts towards P and broadens with forecast lead

time due to the chaos in the atmosphere, and eventually

becomes indistinguishable from P. One may view the

forecast as being “deterministic” up to such lead time as

Pf is narrow enough for its width to be unimportant, and

“probabilistic” thereafter. So long as it remains different

from P, however, one may say that there is some predict-

ability in the system.

The main task of any probabilistic or ensemble pre-

diction system then is to predict Pf as accurately as pos-

sible: not only its mean and standard deviation but also

higher moments, since one cannot gauge beforehand

what aspect of it a user might find most useful. Attention

has traditionally been given to estimating the mean and

standard deviation from an ensemble of forecasts made

using slightly different initial conditions from that of a

control forecast. The ensemble mean can also be issued

as a single “deterministic” forecast. But because nature

may select any state at random from Pf , such an ensem-

ble mean forecast from even a perfect model has limited
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skill. Indeed one can show quite generally, for any fore-

cast variable at any grid point, and regardless of whether

or not Pf is Gaussian, that the expected correlation

of such ensemble-mean forecasts with observations is

given by = S2/[1+ S2], where S = s/σf is the forecast

signal to noise ratio. The signal s here is the mean of Pf ,

estimated as the ensemble mean, and the noise σf is its

standard deviation, estimated as the ensemble spread. S
generally decreases with forecast lead time due to both

the decrease of signal and increase of noise. Note that

is the expected skill of a perfect model in which the

signal is determined as the mean of an infinite-member

ensemble. The expected skill is lower if an insufficient

number of ensemble members is used to estimate the

signal. The actual skill ρ can be brought down even fur-

ther by initial condition errors and model errors. A more

detailed discussion of these issues can be found in

Sardeshmukh et al (2000; their sections 9 and 10).

Note that if σf is underestimated (as is often the case

with operational systems) then S, and therefore , are

overestimated even when s is correctly determined.

Accurate representations of both s and σf are thus

important for estimating predictability. Accurate repre-

sentation of σf is also directly important for correctly

representing the tails of Pf , and therefore the risks of

extreme anomalies.

How one quantifies predictability in a probabilistic

forecasting framework depends upon the forecast prob-

lem of interest. The traditional emphasis in studies of

shorter-term predictability on flow-dependent instabili-

ties, i.e. on the predictable variations of noise, has led to

a focus on measures comparing forecast and climatolog-

ical variance (e.g., Schneider and Griffies 1999). Since

usually forecast skill also results from a change in the

mean of Pf (relative to the zero mean of P), a measure

combining both signal and noise effects may be desir-

able, such as relative entropy R (Kleeman 2002). If the

width of Pf is independent of the mean of Pf, however,

then variation of predictability is due to variation of the

signal alone. In this case, it is simpler to consider ,

which has the additional advantage of being directly

comparable to a commonly-used measure of forecast

skill1. This has also been the approach used for seasonal

predictability, assessed in terms of the ratio of SST-

forced variability to state-independent “internal” vari-

ability (e.g., Madden 1976; Shukla and Gutzler 1983;

Chervin 1986; Zwiers 1987; Kumar et al 1996; Brank-

ovic and Palmer 1997; Rowell 1998; Chen and van den

Dool 1999; Anderson et al. 1999; Sardeshmukh et al

2000).

The particular predictability problem we will consider

is that of weekly average anomalies of the northern

hemispheric circulation and tropical diabatic heating at

lead times of two weeks and greater, during both winter

and summer. The inclusion of tropical heating is moti-

vated by its potentially important impact upon subsea-

sonal extratropical forecast skill (e.g., Sardeshmukh and

Hoskins 1988; Ferranti et al 1990; Qin and Robinson

1995; Hendon et al 2000; Winkler et al. 2001). With the

exception of a few other analyses (e.g., van den Dool

and Saha 1990; Branstator et al 1993; Corti and Palmer

1997), most prediction efforts and predictability studies

have traditionally focused on shorter (synoptic) and

longer (seasonal to interannual) time scales. Yet there is

much to be said for studying predictability on the sub-

seasonal scale, if only because variability on this scale

accounts for a large fraction of the total tropospheric cir-

culation variability. Also, episodes of subseasonal dura-

tion, such as springtime floods, summertime heat waves,

and prolonged wet or dry spells, are phenomena with

obvious societal consequences.

We will present estimates of for subseasonal vari-

ability using the simple linear model presented in Win-

kler, Newman and Sardeshmukh (2001; hereafter

WNS), and motivated further in section 2. WNS con-

structed a 37-component Linear Inverse Model (LIM) of

wintertime weekly averaged circulation anomalies in the

northern hemisphere and column-averaged diabatic

heating anomalies in the tropics. The LIM technique is

briefly reviewed in section 2, and model details as well

as a similar LIM of summertime weekly averaged

anomalies are presented in section 3. Section 4 provides

further evidence that the skill of these simple LIMs in

predicting Week 2 and Week 3 anomalies is comparable

to that of the NCEP medium range forecast (MRF)

model. Predictability estimated in the manner out-

lined above is shown in section 5, and compared with

actual average (cross-validated) LIM skill ρ. It is shown

that temporal and geographical variation of can

explain similar variation of ρ, and that much of this vari-

ation is in turn due to variations in tropical heating. It is

finally shown that most of the predictability is associ-

ated with three growing singular vectors of the LIM’s

propagator matrix. When the initial projection on these

singular vectors in high, not only the potential but also

the actual forecast skill is considerably higher than at

other times. That is, both and ρ can on occasion be

substantially larger than their average values, and such

occasions can be identified a priori.

2. Motivation

The general broadening and drift of Pf towards P
associated with loss of predictability are symptomatic of

chaos in the atmosphere. But they are also characteristic

of any stochastically forced dissipative process, whose

expected mean, given an initial condition, drifts (not

necessarily monotonically) towards climatology and

whose variance about this mean increases in response to

the stochastic forcing, eventually saturating at its clima-

tological value. A linear one-dimensional autoregressive

process, also known as an Ornstein-Uhlenbeck process

or simply as red noise, is the simplest example of this. In

approximating atmospheric variability as such a pro-
1. Also, note that for the univariate case, if  and σf

approaches climatological variance, then .
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cess, the dissipative tendency (i.e the drift towards cli-

matology) is associated with thermal and mechanical

damping, and the stochastic forcing with rapidly varying

chaotic fluxes of heat, momentum, and moisture. One

may imagine how a stochastically forced dissipative

model might thus capture the essence of the loss of pre-

dictability with lead time.

An obvious limitation of a one-dimensional red-noise

model in this regard is that its expected mean does drift

monotonically towards climatology. One can, however,

readily construct more complicated but still very simple

multidimensional stochastically forced linear dissipative

models in which S can decrease non-monotonically, and

even exhibit quasi-oscillatory behavior, before eventu-

ally becoming small. Furthermore, in many systems the

effective linear operator governing this process, as well

as the statistics of the stochastic forcing, may be esti-

mated directly from the observed simultaneous and

time-lag covariance statistics of the system variables, as

described for example in Penland and Sardeshmukh

(1995). An effectively linear, stochastically forced

model of a system thus constructed is called a Linear

Inverse Model (LIM) (see also Penland 1989; Penland

and Ghil 1993; Penland 1996; Delsole and Hou 1999;

and WNS).

In any multidimensional statistically stationary sys-

tem with components xi, one may define a time-lag

covariance matrix C(τ) with elements Cij = < xi(t+τ)
xj(t) >, where angle brackets denote a long-term aver-

age. In linear inverse modeling, one assumes that the

system satisfies C(τ) = G(τ)C(0), where G(τ) = exp(Bτ)
and B is a constant matrix, and uses this relationship to

estimate B given observational estimates of C(0) and

C(τ0) at some lag τ0. In such a system any two states

separated by a time interval τ are related as x(t+τ) =
G(τ) x(t) + ε , where ε is a random error vector with

covariance E(τ) = C(0) – G(τ)C(0)GT(τ). Note that the

system need not have Gaussian statistics for these rela-

tions to hold. However, for its statistics to be stationary,

B must be dissipative, i.e its eigenvalues must have neg-

ative real parts. In the context of our preceding discus-

sion, we may write the unconditional and conditional

probability distributions for x(t+τ) given x(t) as P{ 0,
C(0) , . . .} and Pf { G(τ)x(t), E(τ) , . . .} respectively.

Thus G(τ)x(t) represents an “infinite-member ensemble-

mean” forecast for x(t+τ) given x(t), i.e the forecast sig-

nal, and E(τ) represents the expected covariance of its

error, i.e the noise. Note that for large lead times τ,
G(τ)x(t) → 0 and E(τ) → C(0), so Pf → P as required.

The underlying dynamical equation of this system is

(1)

where Fs is noise which is white in time but which may

be spatially correlated, and related to the forecast error

vector as

. (2)

The theory which allows a highly nonlinear system to be

represented by (1) (e.g., Papanicolaou and Kohler 1974;

Hasselmann 1976; see also Penland 1996) requires x to

be “coarse-grained”; that is, x represents spatial and/or

temporal averages. The noise then results from the

effects of initial uncertainty, not only because there is an

unresolved remainder to x but also because information

regarding the precise state is lost in the average. LIM

then makes the important additional assumption that Fs

is state-independent. This is a common although not

necessary restriction to (1), but the assumption makes

the empirical determination of B possible with the lim-

ited amount of data available; its validity can also be

checked a posteriori.

3. Model details and data

a) LIM

As in WNS, we define x as

, (3)

where ψ is anomalous streamfunction and H is anoma-

lous tropical diabatic heating. Both quantities here rep-

resent 7-day running mean averages. Equation (1) is

then

(4)

and infinite-member ensemble-mean forecasts are made

as

. (5)

Here and are the white noise forcing of ψ
and H, respectively. Note that including H explicitly in

x makes it possible to diagnose how tropical heating

impacts streamfunction predictability through BψH
(Newman et al. 2000; WNS).

Certainly, other variables not included in (3) could

also be important to the evolution of ψ or H. The inverse

model does, however, implicitly include the effects of all

other variables linearly related to ψ and/or H. This is an

important distinction from a forward dynamical model

in which the evolution of the state vector is governed

only by the explicitly represented interactions among its
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components.

Linear inverse models for winter (December 1-Febru-

ary 28) and summer (June 1-August 31) have been con-

structed using global National Centers for

Environmental Prediction (NCEP) data from 1969-

2000. [Unlike in WNS, the reanalysis data used had the

TOVS data assimilation error fixed.] Diabatic heating

rates were diagnosed from an improved iterative solu-

tion of the “chi-problem” (Sardeshmukh 1993; Sardesh-

mukh et al. 1999), as described in WNS. Low-frequency

anomalies were defined by removing the seasonal cycle

(that is, the annual mean plus the first three annual har-

monics) from each variable at each gridpoint and then

applying a 7-day running mean filter. Streamfunction

anomalies were determined at 750 hPa and 250 hPa, and

then spectrally smoothed to T21 resolution. Column-

integrated diabatic heating anomalies from the surface

to the tropopause, a simple measure of tropical forcing

which provides a single measure of H in (3) at each hor-

izontal grid point, were spatially smoothed with a spec-

tral filter which attenuates small-scale features and

Gibbs phenomena (Sardeshmukh and Hoskins 1984).

Anomalies were projected onto their leading Empiri-

cal Orthogonal Functions (EOFs), determined sepa-

rately for winter and summer data. The domain for

streamfunction EOFs was the Northern Hemisphere,

and for diabatic heating EOFs the region 30oS—30oN.

The leading 30 EOFs of anomalous streamfunction were

retained in each model. For anomalous tropical diabatic

heating, the leading 7 (20) EOFs of anomalous tropical

diabatic heating were retained in winter (summer). The

time-varying coefficients of these EOFs, i.e., the princi-

pal components (PCs), define a 37 (50)-component state

vector x in winter (summer). The retained streamfunc-

tion EOFs account for more than 90% of the low-fre-

quency variability in regions of large streamfunction

variability. In winter, the 7 heating EOFs capture over

70% of the low-frequency variability in the central and

western Tropical Pacific, though only about 35% of the

domain-integrated variability. In summer, the 20 heating

EOFs capture almost 60% of the domain-integrated

variability. The separate truncation of these models was

dictated mainly by the desire to produce the best stream-

function forecasts over the hemisphere according to the

skill measures and sampling constraints described in

WNS. The retention of 13 additional EOFs in summer

made only a small (generally less than 5%) difference in

these skill measures. Qualitatively, our results are fairly

insensitive to the EOF truncation of both ψ and H. Tests

of robustness of the LIM, including quantitative sensi-

tivity of results to EOF truncation, , and the heating

dataset used, as well as the cross validation technique1,

are discussed at length in WNS.

TABLE 1.  MRF98 model details.

b) GCM

Forecasts made using different versions of NCEP’s

nonlinear Medium-Range Forecast (MRF) general cir-

culation model (GCM) were also analyzed. Week 2

forecast skill of 11-member ensemble mean forecasts of

the MRF model used operationally at NCEP, for the

winters of 1996/97-1999/00 and the summers of 1996-

1999, was determined. Since operational MRF forecasts

were not available beyond week 2, and only forecasts

starting in 1996 were available, a parallel analysis using

a version of the MRF model that was operational at

NCEP during January-June 1998 (Caplan et al 1997, Wu

et al 1998 and references therein) was conducted. An

overview of the model formulation is presented in Table

1. This version of the MRF (hereafter “MRF98”) was

used to make 21-day forecasts initialized with the

NCEP/NCAR Reanalysis (Kalnay et al 1996) once each

day at 00 UTC. More recent versions of the MRF are not

compatible with the initial condition files available with

the reanalysis. Integrations have been run from Novem-

ber 1978 to the present. Ultimately, this “reforecast”

dataset will consist of an ensemble of forecasts, but the

results presented here are for the (single) control run.

[This dataset of forecasts using a frozen model is pub-

licly available via the Climate Diagnostics Center

(CDC) web site (http://www.cdc.noaa.gov/~jsw/refcst),

and can be used for predictability studies as well as for

calibrating and correcting real-time forecasts with the

1. The cross-validation technique used in WNS was modified
for this paper so that separate EOF bases and 29-year climatolo-
gies were used for each LIM. The resulting difference in cross-
validated forecast skill was exceedingly minor (on the order of
1-2%) except for January-February 1999.

τ0

Horizontal Resolu-

tion:

Triangular truncation at total wave-

number 62

Vertical Resolution 28 sigma levels

Convective Param-

eterization

Simplified Arakawa-Schubert (Pan

and Wu, 1994) for deep convection,

vertical diffusion of heat and mois-

ture in the upper boundary layer

and lower free atmosphere (Tiedtke

1983) to simulate non-precipitating

shallow convection.

Radiation Short-wave due to Lacis and

Hansen (1974), Long-wave due to

Fels and Schwarztkopf (1975).

Boundary Layer

Parameterization

Based on Troen and Mahrt (1996).

Topography mean orography

Cloud scheme 3 levels of stratiform clouds, frac-

tional coverage determined as a

quadratic function of layer RH.

Time integration semi-implicit, taking into account

physics tendencies

Horizontal diffu-

sion

Laplacian type, based on Leith

(1971) formulation.
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same model.]

As do all GCMs, the MRF has a climate drift which

increases with forecast lead. The 20+ yr period of the

MRF98 forecasts was used to determine this evolving

model climate at each grid point as the seasonal cycle of

all forecasts for the years 1979-2000. Since this system-

atic error was also a function of forecast lead, it was

computed separately for all Week 2 and Week 3 fore-

casts. All MRF98 forecasts were then corrected by sub-

tracting this error from each forecast at each grid point.

A similar correction was not attempted for the opera-

tional MRF forecasts, due to their limited period and

unfixed forecast system.

The different forecast models used in this paper are

summarized in Table 2.

4. Forecast skill

Our measure of forecast skill is the average anomaly

correlation between , the ensemble mean fore-

cast at lead τ, and , the observed state at that

time:

(6)

where <•,•> is an inner product which can be chosen for

any norm of interest. Spatial dependence of skill is mea-

sured with local anomaly correlation, with <•,•> defined

as a scalar product of the forecast and verification anom-

aly time series computed at each grid point. Similarly,

temporal dependence is measured with anomaly pattern

correlation, with <•,•> defined at each time as a scalar

product of the forecast and verification anomalies in the

region north of the Equator between 120E and 60W.

Note that all measures of actual forecast skill presented

in this study for the LIM are based upon cross-validated

(jack-knifed) forecasts. Also, forecasts are always com-

pared with the complete (that is, the untruncated) obser-

vations in grid space.

By both measures, LIM forecasts of streamfunction at

any lead τ are more skillful than persistence, climatol-

ogy, and the local time-lag autocorrelation. They also

show much higher skill than simplified linear dynamical

models, including those forced with observed tropical

heating (WNS).

To use this stochastically-forced linear model to

investigate predictability, its forecast skill must be com-

petitive with that of fully nonlinear GCMs. This is

indeed the case. Shown in Fig. 1 is Week 2 forecast skill

from LIM and from 11-member ensemble mean opera-

tional MRF forecasts, for the winters of 1996/97-1999/

00 and the summers of 1996-1999. For GCM forecasts,

we define week 2 as the mean of days 8—14 and week 3

as the mean of days 15—21, where day 0 is the forecast

initialization. The LIM forecast is initialized on day -3

with the 7-day mean centered on that date (that is, the

mean of days -6 — 0), and is then run forward 14 and 21

days. This definition is illustrated in Fig. 2. Thus, the

LIM and GCM forecasts verify for the same period, and

neither uses information past day 0 in the initialization.

TABLE 2. Summary of forecast models used in this paper.

Model
Forecast lead

(weeks)

Ensemble
size

Period

LIM 2,3 12/1969-2/2000

MRF98 2,3 1 12/1978-2/2000

OMRF 2 11 12/1996-2/2000

x t τ+( ))

x t τ+( )

ρ τ( ) x t τ+( ) x t τ+( ),〈 〉
x t τ+( ) x t τ+( ),〈 〉 x t τ+( ) x t τ+( ),〈 〉[ ] 1 2⁄--------------------------------------------------------------------------------------------------------------=

)

) )

∞

FIG. 1: Spatial pattern correlation of week 2 250 hPa streamfunc-
tion forecasts in the region 0—90N, 120E—60W from the linear
inverse model (LIM), the operational MRF ensemble mean, when
available (OMRF), and the single MRF reforecast run (MRF98).
Verifications begin December 15 of each year for winter and June
15 for summer.
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FIG. 2: Schematic illustrating forecast protocol used in this
paper. Note that the MRF is initialized on Day 0.
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As a result, the week 2 predictions begin verifying on

December 15 each winter and June 15 each summer.

Skill of the two models is comparable. Occasionally,

LIM forecasts have higher skill than MRF ensemble-

mean forecasts, although there are clearly times when

the LIM is much worse than the MRF. It is particularly

striking that there are extended periods during which

both models have similar variations in skill, raising the

possibility that they may be nearing the limit of predict-

ability at these times. It should nonetheless be noted

that, since the two models share similar streamfunction

initial conditions, similar forecast skill may also be

partly due to systematic error in those initial conditions.

How the LIM compares with the MRF ensemble at

longer forecast leads is not known since operational

MRF forecasts are not available beyond week 2. Also,

sampling might impact the comparison between the two

models since only four years of forecasts were used.

Thus, the LIM is next compared with the MRF98 fore-

casts. Although currently only a single 21-day MRF98

forecast made from each day is available, the skill of

these “single-member ensemble forecasts” at week 2

was often essentially identical to the operational ensem-

ble (see Fig. 1). Averaged over these four years (and

keeping in mind that the operational forecast system was

FIG. 3a: Comparison of local anomaly correlation of 250 hPa streamfunction wintertime forecasts for the LIM and MRF98. Top: LIM. Bottom:
MRF98. Contour interval is 0.1 with negative and zero contours indicated by blue shading and dashed lines. Shading of positive values starts at
0.2; redder shading denotes larger values of correlation, with the reddest shading indicating values above 0.6.

LIM

Anomaly correlation of forecasts
Based on forecasts made during DJF 1978/79-1999/2000

MRF

Week 2 Week 3
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not fixed during that time), the week 2 skill of the opera-

tional ensemble mean was about 17% higher than that of

the reforecast.

The LIM and MRF98 forecasts again have compara-

ble skill. Particularly striking is that the geographic dis-

tribution of skill (shown in Fig. 3), as well as its

seasonality, is so similar between these two very differ-

ent models. For example, during winter both models

have a banded structure in skill across the Pacific, with a

minimum in a band along 30oN, particularly on either

side of the ocean basin. Maxima over western Africa

and the North Atlantic, and a minimum over Northern

Europe, are also evident. During summer, both models

have greatest skill in a zone extending from Central

America eastwards to North Africa and in a region over

the northwest Pacific, with a pronounced minimum just

south of Japan.

The seasonal means of pattern correlation for the

LIM, MRF98, and (when available) MRF operational

ensemble for each year are plotted in Fig. 4. The aver-

ages of ρ over all years, and over the years of the

MRF98 runs, are listed in Table 3 for winter and Table 4

for summer. The substantial interannual variability of

forecast skill in both models is quite similar, particularly

in winter; the correlation between seasonally-averaged

LIM and MRF98 wintertime week 2 (3) skill is 0.73

(0.79).

LIM forecasts of similar skill to the MRF98 may

FIG. 3b: Same as Fig. 3a but for the summertime.

LIM

Anomaly correlation of forecasts
Based on forecasts made during JJA 1979-2000

MRF

Week 2 Week 3



8 MONTHLY WEATHER REVIEW, accepted
result when much of the chaotic nonlinear development

of weekly-averaged anomalies can be parameterized

effectively as linear terms plus white noise. LIM fore-

casts better than MRF98 forecasts at week 3 could, how-

ever, be due to deficiencies in the GCM itself. Poor

MRF98 forecasts of tropical heating, particularly of the

MJO, is one possibility (e.g., Sardeshmukh and Hoskins

1988; Ferranti et al. 1990; Klinker 1990; Cai et al. 1996;

Hendon et al. 2000), as is shown in Fig. 5. MRF98 fore-

casts of tropical heating are considerably worse than

those of the LIM over the west Pacific where the

MRF98 has poor skill as early as week 1 (not shown)

and no skill by week 2. [Tropical precipitation forecasts

from the operational MRF ensemble are similarly poor

(not shown).] During summer, the MRF98 has some-

what better skill in the Tropics, although still poorer

than the LIM.

Systematic error may also reduce MRF98 skill. For

example, in summer forecast errors in the Pacific jet are

very large, as can be seen in 21-yr averages of week 2

forecasts of relative vorticity during February and June

(Fig. 6). This impacts both the scale and propagation of

Rossby waves across the Pacific waveguide (Newman

and Sardeshmukh 1998), resulting in errors not correct-

able by removal of the systematic error alone. In con-

trast, the LIM has no mean error, by design.

The MRF98 should have higher skill than shown here

if each reforecast were an ensemble rather than a single

realization. However, some regional and temporal dif-

ferences in week 3 skill between the LIM and the

MRF98 are too large to be completely eliminated by this

possibility (Sardeshmukh et al. 2000), as is the sharp

decline in MRF98 skill from week 2 to week 3 espe-

cially when compared to the much smaller decline for

the LIM. Furthermore, the relatively small improvement

FIG. 4: A comparison of the LIM and MRF forecast skill com-
puted separately for each year of the jack-knifed forecasts. The solid
line indicates the seasonal mean of daily spatial pattern correlation of
week 2 and week 3 250 hPa streamfunction LIM forecasts in the
region 0—90N, 120E—60W. The same forecast quantity is indicated
for the MRF reforecasts (MRF98) by the dotted line, and for the
operational MRF ensemble mean (OMRF; at week 2 only) by the
solid line with filled circles. Also shown is the theoretical forecast
skill, indicated by the seasonal mean of , for the same forecast
measure, as the thin solid line with open circles.
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TABLE 3. Mean pattern correlation between forecasts and
verification, in the Northern Hemisphere between 120E and 60W
during winter, compared with the expected skill determined from the
LIM.

Week 2 Week 3

 (LIM), 1969/70-1999/00 0.55 0.45

ρ  (LIM), 1969/70-1999/00 0.39 0.33

 (LIM), 1978/79-1999/00 0.52 0.44

ρ  (LIM), 1978/79-1999/00 0.37 0.30

ρ (MRF), 1978/79-1999/00 0.48 0.24

ρ∞

ρ∞

TABLE 4. Same as Table 3 except for summer.

Week 2 Week 3

 (LIM), 1969-1999 0.47 0.36

ρ  (LIM), 1969-1999 0.29 0.21

 (LIM), 1979-1999 0.45 0.35

ρ  (LIM), 1979-1999 0.29 0.20

ρ  (MRF), 1979-1999 0.34 0.17
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FIG. 5: Comparison of local anomaly correlation of column-inte
grated tropical diabatic heating week 2 forecasts for the LIM and the
MRF98. Top: wintertime. Bottom: summertime. Contour (fill) interva
is 0.2 (0.1).
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in skill actually obtained on average by the operational

ensemble relative to the MRF98 reforecast at week 2

suggests that at least some of the higher LIM week 3

skill is real.

5. Predictability in the linear system

Clearly, the LIM does not reproduce every facet of the

MRF98 forecast skill, but Figs. 3 and 4 show that much

of the temporal and spatial distribution of skill is similar

between the two models. This, combined with the LIM’s

generally higher level of skill in the extended range,

minimal systematic error, appropriate forecast spread,

and better simulation of tropical heating, suggests that

further exploration of the LIM predictability limits and

the sources of that predictability can give significant

insight into the potential skill of subseasonal forecasts.

Recall that we will measure predictability by the

expected skill of a perfect model infinite-member fore-

cast ensemble,

(7)

where S(τ) is the signal-to-noise ratio and τ is the fore-

cast lead. We determine S(τ) either for each system

component (e.g., at each gridpoint for each variable) or

for the system as a whole over some geographical

FIG. 6: Comparison of observed monthly mean 250 hPa relative vorticity during February and June with that predicted at week 2 by the
MRF98. Left panels show observed vorticity; contour interval is 6 x 10-6 s-2 . Right panels show difference maps between the observed vorticity
and the MRF week 2 vorticity, determined as the average of all week 2 forecasts verifying during the month; contour interval is 3 x 10-6 s-2. In all
four panels, negative values are indicated by shading and thinner contours; the zero contour is eliminated for clarity
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region. If (τ) represents local anomaly correlation,

S(τ) is a function of space but not time:

, (8)

where is the signal

covariance matrix, is

the covariance matrix of the forecast error, and i is the

grid index. That is, S is a ratio of the diagonal elements

of F and E. If instead (τ) represents pattern correla-

tion, S(τ) is a function of time but not space:

(9)

where the trace again is defined only between 120 E and

60 W, poleward of the equator. That is, S is a ratio of the

sum of the diagonal elements of F and E. Note that for

both (8) and (9), the denominators are assumed constant

and are determined from statistics of the entire 30 yr

period, consistent with the assumption of state-indepen-

dent noise.

Since (7) is derivable from (6), dependent upon nei-

ρ∞

FIG. 7: Local anomaly correlation of week 3 streamfunction forecasts for LIM, for winter (top) and summer (bottom), at 250 hPa. Left: Theo-
retical mean predictability limit . Right: Actual skill from 30 years of jack-knifed forecasts. Plotting conventions are as in Fig. 3.ρ∞

DJF

Anomaly correlation of Week 3 forecasts

JJA

Theoretical Actual

S2 τ( ) F τ( )ii

E τ( )ii

--------------=

F τ( ) x t τ+( ) x t τ+( )T〈 〉=
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ther linearity nor Gaussianity (Rowell 1998; Sardesh-

mukh et al. 2000), we will relate variations in actual

(imperfect model) LIM forecast skill ρ(τ) with varia-

tions in expected (perfect model) skill (τ).

5.1. Signal-to-noise ratio and expected predictability

Overall mean expected skill is determined by averag-

ing forecast covariance over all possible initial condi-

tions,

.

Fig. 7 compares the map of , determined using (8)

for forecast lead τ = 21 d, with the actual anomaly corre-

lation ρ of all cross-validated week 3 forecasts. In both

seasons ρ is generally less than . Certainly, while the

LIM may be a good model of variability of x, it is not a

perfect one. Also, practical limitations to the empirical

determination of B could be expected to produce errors

both in model formulation and model forecasts. For both

these reasons, treating the LIM as if it were a perfect

model underestimates the actual forecast error variance

by about 10% (see also the longer discussion by WNS),

and there is a weak (0.1-0.3) correlation between the

actual forecast errors and the forecasts.

Despite these limitations, the patterns of actual and

expected skill are very similar, and the expected week 3

skill is at least partly realized. Subseasonal predictabil-

ity limits undergo strong variation from place to place

and from winter to summer. Notably, there is an overall

shift of predictability from the western hemisphere

(roughly 60E-120W) in the winter to the eastern hemi-

sphere (roughly 120W-60E) in the summer. For exam-

ple, 250 mb streamfunction anomalies over China and

the U.S. Great Plains are much more predictable in win-

ter than summer, whereas the situation is reversed over

Europe and North Africa. On the other hand, in both

seasons predictability is low east of Japan while it is

high northeast and southeast of Japan. From winter to

summer, there also appears to be a northward shift of

predictability over Africa and the Pacific.

5.2. Impact of Tropical Heating upon Predictability

Tropical diabatic heating is strongly related to growth

of streamfunction anomalies during winter and

increases both forecast skill and forecast amplitude

(WNS), so we expect it to contribute to predictability.

The effect of tropical heating is gauged by determining

separately from B and from a new linear operator

, identical to B except that BψH=0 in (4). Mean

expected pattern correlation skill as a function of fore-

cast lead, with and without tropical heating effects upon

streamfunction included in the LIM, is shown in Fig. 8.

On average, tropical heating increases predictability for

all forecast leads and thus extends the period over which

useful forecasts might be made. For example, during

winter the full LIM has a mean expected pattern correla-

tion of for forecast leads up to 15 days, which

is 5 days longer than for forecasts made using . The

impact of tropical heating is relatively as strong during

summer, but overall predictability is less.

This point is further illustrated by Fig. 9, which on the

left displays the forecast lead at which falls below

0.5 for both wintertime and summertime 250 hPa

streamfunction anomalies. On the right is shown the

contribution of tropical heating to this expected predict-

ability; that is, the difference between the potential pre-

dictability using either B or as the forecast operator.

During winter, tropical heating is responsible for the

substantial increase in predictability over the Western

Hemisphere, creating maxima which would not other-

wise exist throughout the Pacific Basin. Heating also

increases predictability over western Africa. During

summer, the impacts of tropical heating are more subtle.

Even without heating, predictability during summer

would be higher in the Eastern Hemisphere, albeit in a

region shifted further to the south and east. Still, heating

does notably enhance predictability over broad areas of

the Pacific. Without heating, week 2 predictability

would not exist over the southern half of North America.

5.3. Predictability associated with maximally amplifying
structures

Given that depends on the magnitude of the sig-

nal, we expect that some states will be more predictable

FIG. 8. Expected forecast skill as a function of lead time (days)
for the LIM and for the LIM with tropical forcing removed. See text
for further details.
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than the limits determined above, which were averaged

over all possible initial states. Although B is asymptoti-

cally stable, long-term (if finite-time) anomaly growth is
possible via modal interference. In that case, a singular

value decomposition (SVD) of the propagator G(τ) =
exp(Bτ) under a suitable norm will produce some singu-

lar vector pairs ui,vi whose singular values Σi (some-

times called the finite-time Lyapunov exponents) are

larger than 1. The pair associated with the largest (or

leading) singular value Σ1 describe the greatest possible
growth in the norm over the time interval (e.g.,

Farrell 1988; Lacarra and Talagrand 1988; Sardeshmukh

et al 1997). Results of such an analysis for the L2 norm

of Northern Hemisphere streamfunction (see also WNS)

with τ=21 d are shown for each season in Fig. 10. The

leading right singular vector v1 for τ greater than about a

week is dominated by strong anomalous tropical heating

(Figs. 10a and b), with relatively more heating west of

the dateline during summer than winter. In both seasons,

the initial streamfunction anomaly (not shown) is mini-

mal. The global scale streamfunction anomaly that

results 21 days later (Σ1u1; Figs. 10c and d) has a pro-

nounced zonally symmetric component, is equivalent

barotropic during winter but baroclinic (not shown) dur-

ing summer, and is more prominent over the Pacific

(Atlantic) sector during winter (summer).

The regions of greatest anomaly growth are not neces-

sarily the regions of greatest predictability, since the

noise also has spatial structure. Thus, local predictabil-

ity associated with these maximally amplifying struc-

tures was determined from (7) and (8) by setting the

initial condition x(t) = α1v1, where (α1Σ1)2 = tr[C(0)],

so that . The resulting maps

of (Figs. 10e and f) are indeed consistent with but

not entirely coincident with the evolved anomalies

(Figs. 10c and d). Clearly, much of the geographic and

seasonal variation of predictability in Fig. 7, such as the

shift in expected skill from the Western to Eastern hemi-

spheres from winter to summer, is due to initial states

with strong projection on v1 (cf. Fig. 10 and the left pan-

els of Fig. 7) and hence high initial amplitude of tropical

heating (cf. Fig. 10 and the right panels of Fig. 9).

Note that both winter and summer leading singular

vectors have large central/east Pacific heating anoma-

lies, characteristic of ENSO. This suggests that predict-

ability is greatest during ENSO years. However, this

conclusion is only partly true, particularly for week 2.

First, as WNS stressed, streamfunction anomaly growth

results directly from the heating anomaly, not the SST

anomaly. That is, initial anomalies can occasionally

have a large projection on the leading singular vector

even during non-ENSO years, and conversely projection

on the leading singular vector is not always large during

ENSO years (e.g., the first half of DJF 97/98). Also, dur-

ing periods of high MJO activity (for example, DJF 96/

97), some phases of the MJO will have a high projection

on both singular vectors 1 and 2, resulting in high pre-

dictability over periods substantially shorter than a sea-

son.

In a globally averaged sense, maximum possible

, where

is the normalized globally integrated LIM error variance

which saturates relatively early, reaching 0.8 within

about 10 days. is a maximum at about 18 (14)

days during winter (summer), so that in a global sense

streamfunction predictability could potentially increase
until then. Locally, maximum possible skill during win-

ter for τ=21 d is larger than it is for τ=14 d (not shown)

in a few regions, most notably in a zone extending from

the western U.S. to the central Atlantic. This aspect of

the LIM mimics the “return-of-skill” (Anderson and van

den Dool 1994) seen in some low-dimensional chaotic

systems (e.g., Smith et al 1999), but here it arises partly

because the noise saturates well before the time tropical

heating needs to produce a predictable linear extratropi-

cal response. However, it generally requires a very

strong projection on the leading singular vector which

occurred in only a few percent of all forecasts. On the

other hand, about 40% of all week 3 cross-validated

t t τ+,[ ]

F τ( ) α 1
2G τ( )v1v1

TG τ( )T=
ρ∞

FIG. 9: Mean potential predictability limit: forecast lead at which
skill (i.e., the correlation of observed and predicted anomalies) drops
below 0.5. Contour interval is 5 days, with negative values indicated
by blue shading andd dashed lines. (a) Wintertime predictability,
determined from the full LIM. (b) Change in wintertime mean pre-
dictability due to the effect of tropical heating (that is, from the BHψ
term). (c) Summertime predictability, determined from the full LIM.
(d) Change in summertime predictability due to the effect of tropical
heating (that is, from the BHψ term).
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forecasts had higher skill than the week 2 forecast ini-

tialized at the same time. This is an expected result of

the low signal-to-noise ratio and the small decrease in

both expected and actual mean forecast skill from week

2 to week 3 (see Table 3), and thus mostly reflects ran-

dom variations of the actual noise rather than true

return-of-skill.

5.4. State-dependent predictability

Finally, case to case variations of expected forecast

skill, associated with predictable variations of signal, are

compared to actual skill. First, each initial condition

x0(t) is used to determine from (7) and (9) where

. Although significant, the cor-

relation between the daily values of and actual daily

FIG. 10: Initial heating component of the leading singular vector for winter (DJF) and summer (JJA) (top panels), the “final” streamfunction
component of that singular vector at day 21 (middle panels), and maps of the associated maximum theoretical predictability (bottom panels). (a)
Initial condition of tropical heating during winter. (b) Initial condition of tropical heating during summer. (c) 250 hPa streamfunction 21 days
later during winter. (d) 250 hPa streamfunction 21 days later during summer. A heating contour interval of 50 W m-2 corresponds to streamfunc-
tion contours of 4.9 x 106 m2 s-1. Positive values are denoted by red-yellow shading; negative values are denoted by blue shading. (e and f) The-
oretical maximum predictability limit for week 3 streamfunction LIM forecasts, for winter (e) and summer (f), at 250 hPa, for cases in
which the initial condition is identical to the leading singular vector for τ=21 d.
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forecast skill ρ is not high, however, most likely because

noise produces a wide ensemble spread on a daily and

even weekly basis.

The effect of noise is reduced by averaging both ρ and

over all the forecasts from a single season, as shown

in each panel of Fig. 4. The overall means of these val-

ues are included in Tables 3 and 4. Predictability under-

goes pronounced interannual variation, due entirely to

the interannual variation of the initial conditions and

their subsequent linear evolution. Observed and

expected skill are not identical, but they now are more

strongly correlated, moreso during winter (r=0.7) than

summer (r=0.6). Certainly, the effects of noise are such

that we still do not expect this correlation to be 1; that is,

even if the LIM were a perfect model the noise PDF

would not be well sampled over the course of a single

season. Nevertheless, Fig. 4 suggests that much of the

interannual variation of both the LIM and MRF98 fore-

cast skill can be understood as interannual variation of

linear predictability.

For the LIM, predictability is state-dependent, with

higher predictability and higher actual forecast skill

associated with singular vector growth. We can demon-

strate this by again comparing predicted and actual LIM

skill with MRF98 skill, but this time by averaging the

skill over cases in which the initial condition projects

strongly upon some combination of the three leading

(right) singular vectors. Results are shown in Fig. 11.

Skill is binned into eight categories, depending upon the

projection of the initial condition upon each of the sin-

gular vectors. These projections are determined sepa-

rately for each season and for lead times of both 14 and

21 d. A “high” projection is defined as having amplitude

(of either sign) greater than 1 σ, as determined from the

variance of the projection of all data upon each singular

vector. Note that the categories are not equally popu-

lated; the largest single category has small projection

upon all three leading singular vectors, but generally

there is high projection upon at least one and occasion-

ally upon all three.

As expected, predicted skill generally increases as the

initial condition projects more strongly on growing

structures. The actual LIM skill varies in a similar man-

ner, perhaps most notably for Week 3 forecasts during

winter. This relationship can be used to identify a priori
those LIM forecasts which have high potential for skill

and those with high potential for failure; that is, we can

“forecast the forecast skill” to some extent. The similar

(if weaker) relationship between MRF98 forecast skill

and LIM predicted skill suggests that the LIM could be

used to identify skillful forecasts of this (and perhaps

other) version of the MRF in advance, even when LIM

skill is less than MRF skill. Deficiencies in the LIM pre-

dicted-MRF98 actual skill relationship may also be use-

ful in helping to identify those forecast scenarios in

which model error is, or is not, playing a pronounced

role. For example, Fig. 11 might be interpreted as sug-

gesting that the MRF98 does poorer than expected when

the projection on both the first and second singular vec-

tors is high. Conversely, during summer MRF98 skill is

relatively higher and compares well with the LIM, at

both weeks 2 and 3, when the initial conditions strongly

project on the second singular vector. At 250 mb, this

pattern (not shown) represents an amplification and

southeastward extension (weakening and northwestward

contraction) of the subtropical Pacific trough centered

just north of Hawaii plus a weaker wavetrain extending

to the United States, primarily forced by anomalous

heating (cooling) in the east Pacific. MRF98 skill in

these cases may be less impacted by model error, since

the LIM and MRF98 tropical heating skill in the east

Pacific are comparable and since the MRF98 systematic

error (Fig. 6) is weaker in this region.

Skill of the LIM and MRF98 can be comparable even

when the initial condition has small amplitude in the

tropics (e.g., wintertime Week 2 singular vector 3), a

reminder that predictability in the LIM also results from

entirely extratropical dynamics (WNS). Finally, note

that the MRF98 has generally higher skill than the LIM

when the projection on all three singular vectors is low,

suggesting additional sources of skill beyond those esti-

mated by the LIM. Whether this skill is due to predict-

able nonlinearity captured by the MRF, or simply

additional growing (linear) singular vectors not resolved

with the limited truncation employed in this version of

the LIM, is not known.

6. Concluding remarks

Predictability has often been estimated using compli-

cated nonlinear numerical models and treating them as

“perfect” models (e.g., Lorenz 1982; Schubert et al.

1992). These models produce more realistic variability

than lower-order “toy” models of chaos, but a complete

determination of error growth (for example, computing

all the Lyapunov exponents) is not practical. Also, as is

well known, such models can have significant deficien-

cies which degrade their realism. In particular, estimat-

ing predictability on subseasonal timescales (indeed,

even making forecasts on these timescales) may be seri-

ously compromised both because of the low spread of

ensembles (e.g., Whitaker and Loughe 1998) and

because of the generally poor forecasts of tropical heat-

ing made by these models (Ferranti et al. 1990; Slingo et

al. 1996; Hendon et al. 2000).

In this paper, we followed a different approach based

on the idea that some highly nonlinear systems can be

approximated as stochastically forced linear systems.

This multivariate red noise approximation proved to be

surprisingly accurate on the intermediate timescales of

interest here, resulting in empirical linear operators for

winter and summer which were of relatively low dimen-

sion, yet produced forecasts which were not only about

as skillful as the higher-order fully nonlinear numerical

models, but also had very similar geographical, tempo-

ral, and seasonal variations of forecast skill. These vari-

ations of skill were understood as resulting from

ρ∞
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variations of predictability assessed from the relative

importance of the deterministic, linear dynamics and the

unpredictable noise.

The fact that actual model skill is not as high as the

theoretical predictability limit could certainly be

expected from limitations in applying the LIM tech-

nique to observed data which is neither completely sam-

pled nor entirely accurate. Of course, if predictable

nonlinearity exists in the real atmosphere on subsea-

sonal time scales then more sophisticated nonlinear

techniques may ultimately surpass this analysis. On the

other hand, we could also add greater sophistication to

our model, while retaining the linear nature of the pre-

dictable dynamics, by allowing Fs to be red or even to

remain state-dependent. For example, in the Tropics Fs
could depend upon the phase of the MJO (e.g., Straub

and Kiladis 2002). Such multiplicative noise (e.g., Pen-

land 1996; Buizza et al. 1999; Sardeshmukh et al. 2001),

although difficult to determine empirically, would make

the ensemble spread state-dependent and would thus

FIG. 11. Mean pattern correlation stratified by projection of the initial condition on the three leading singular vectors, determined separately for
both winter and summer and for τ = 14 d and 21 d. Categories are indicated by the filled boxes; for example, an initial condition with high projec-
tion on right singular vectors 1 and 3 but low projection on right singular vector 2 is indicated by a black box for 1, a white box for 2, and a black
box for 3. The percentage of cases which fall in each category is indicated by the number above the bars, rounded to the nearest integer.
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generally alter . We suspect that this effect is rela-

tively small, however, since not only is a useful pre-

dictor of ρ but also the LIM successfully reproduces the

simultaneous and lagged covariability statistics of the

real system (Newman et al 2003).

Most of the predictability of the LIM is associated

with the growing singular vectors of the LIM’s propaga-

tor matrix G(τ). When the initial projection on these sin-

gular vectors is high, not only the potential but also the

actual forecast skill is considerably higher than at other

times. The version of the NCEP model examined here

also appears to have similar variation between relatively

high and low forecast skill cases. However, its longer

range skill is generally less than that of the LIM, at least

partly because of its lesser ability to forecast tropical

heating variations in regions where the evolution of the

heating component of the growing singular vectors is

important to the extratropical response. Our results thus

suggest both that there is considerable predictability of

Week 2 and Week 3 averages in some regions of the

Northern Hemisphere, much of which may be identified

a priori, and that this skill may not currently be fully

realized in some forecasting systems because of their

error in predicting tropical heating variations in some

sensitive areas. Moreover, since each LIM forecast

ensemble takes a few seconds of CPU, extremely cheap

and potentially useful Week 3 forecasts are available

now.
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